Stability analysis of reaction-diffusion models on evolving domains: The effects of cross-diffusion

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability analysis of reaction-diffusion models on evolving domains: the effects of cross-diffusion

This article presents stability analytical results of a two component reaction-diffusion system with linear cross-diffusion posed on continuously evolving domains. First the model system is mapped from a continuously evolving domain to a reference stationary frame resulting in a system of partial differential equations with time-dependent coefficients. Second, by employing appropriately asympto...

متن کامل

Exhibiting cross-diffusion-induced patterns for reaction-diffusion systems on evolving domains and surfaces.

The aim of this manuscript is to present for the first time the application of the finite element method for solving reaction-diffusion systems with cross-diffusion on continuously evolving domains and surfaces. Furthermore we present pattern formation generated by the reaction-diffusion system with cross-diffusion on evolving domains and surfaces. A two-component reaction-diffusion system with...

متن کامل

Global existence for semilinear reaction-diffusion systems on evolving domains.

We present global existence results for solutions of reaction-diffusion systems on evolving domains. Global existence results for a class of reaction-diffusion systems on fixed domains are extended to the same systems posed on spatially linear isotropically evolving domains. The results hold without any assumptions on the sign of the growth rate. The analysis is valid for many systems that comm...

متن کامل

Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains.

By using asymptotic theory, we generalise the Turing diffusively-driven instability conditions for reaction-diffusion systems with slow, isotropic domain growth. There are two fundamental biological differences between the Turing conditions on fixed and growing domains, namely: (i) we need not enforce cross nor pure kinetic conditions and (ii) the restriction to activator-inhibitor kinetics to ...

متن کامل

Cross-diffusion Induced Instability and Stability in Reaction-diffusion Systems

In a reaction-diffusion system, diffusion can induce the instability of a uniform equilibrium which is stable with respect to a constant perturbation, as shown by Turing in 1950s. We show that cross-diffusion can destabilize a uniform equilibrium which is stable for the kinetic and self-diffusion reaction systems; on the other hand, cross-diffusion can also stabilize a uniform equilibrium which...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems

سال: 2015

ISSN: 1078-0947

DOI: 10.3934/dcds.2016.36.2133